STUDY GUIDE

Examination: The Soils Laboratory Technician examination is based on the following references. It will be 3 hours in length and is an open–book examination. The examination will consist of 75 multiple-choice questions. All of the listed references can be used and will be provided along with the examination. A basic calculator (i.e., no printing or programming capabilities) is also authorized.

References:

H. ASTM D2487-10, Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System).

Learning Objectives

I. ASTM D421

A. Familiar with the scope of D421
 • Knows the applicable test methods that D421 prepares a soil sample for.
B. Familiar with the procedure of D421
 • Knows the proper processing of soil to prepare for particle size analysis.
• Knows the proper processing of soil to prepare for soil constants testing (liquid limit and plastic limit).
• Knows the proper sample size requirements.

II. ASTM D422

A. Familiar with the scope of D422
 • Knows that this is a grain size distribution test. The distribution of particles larger than #200 sieve is determined by sieving, and the distribution of particles smaller than #200 sieve is determined by a sedimentation process using a hydrometer.
B. Familiar with the test procedure and required equipment.
 • Knows what sieve(s) may be used as the separation sieve.
 • Knows how to prepare the dispersing agent.
 • Knows proper sample sizes based upon nominal particle size.
 • Understands how to determine a composite correction and the need for this correction.
 • Understands the hygroscopic moisture sample.
 • Familiar with both stirring apparatus, A and B, and the necessary stirring times for each.
 • Able to manually calculate (non-programmable calculator permitted) “% Retained” (or “% Passing”) for the coarse fraction given some laboratory test results.
 • Able to manually calculate (non-programmable calculator permitted) “% Finer” for the fine fraction given some laboratory test results.

III. ASTM D698 & ASTM D1557

A. Familiar with the scope of the Standards
 • Knows that ASTM D698 is the “Standard Proctor” and produces a compactive effort of 12,400 ft-lbf/ft³ (Standard Effort).
 • Knows that ASTM D1557 is the “Modified Proctor” and produces a compactive effort of 56,000 ft-lbf/ft³ (Modified Effort).
 • Knows what material that the ASTM Proctors are applicable to and what material that these test methods are not applicable to.
 • Knows which compaction method (A, B, or C) is applicable based on sample gradation.
B. Familiar with the test procedures and the required equipment.
 • Knows that ASTM D698 utilizes a “standard hammer” (5.5 lb sliding hammer with 12” drop) and is compacted in 3 equal layers.
 • Knows that ASTM D1557 utilizes a “modified hammer” (10 lb sliding hammer with 18” drop) and is compacted in 5 equal layers.
 • Knows what equipment is required based on compaction method (A, B, or C), and the procedures for preparing and compacting the material.
• Familiar with the calibration/verification of the equipment.
• Able to manually calculate (non-programmable calculator permitted) moisture contents, wet densities, and dry densities. Also able to plot Proctor points and draw compaction curves.
• Able to determine optimum moisture content and maximum dry density from compaction curve.

IV. ASTM D854

A. Familiar with the scope of ASTM D854
• Knows that there are two different acceptable methods for performing specific gravity tests according to D854.
• Knows the differences between performing these two methods.

B. Familiar with the test procedure and the required equipment.
• Knows what the following equipment are, as well as the proper readabilities, capacities, settings, etc.: pycnometer, balance, drying oven, thermometric device, desiccator, entrapped air removal apparatus (hot plate, Bunsen burner, and vacuum system), and the type of water necessary.
• Knows the proper specimen size for different types of soil and test method performed.
• Knows the procedure for calibration of the pycnometer.
• Knows the procedures for performing the test methods (Method A and Method B).
• Able to manually calculate (non-programmable calculator permitted) the specific gravity of a soil, given the critical testing data/results.

V. ASTM D1883

A. Familiar with the scope of ASTM D1883
• Knows that this method determines the bearing ratio of pavement subgrades, subbase, and base course materials.
• Knows that this method is primarily intended for materials with maximum particle sizes less than $\frac{3}{4}$", but provisions are made to test materials with maximum particle sizes greater than $\frac{3}{4}$".

B. Familiar with the procedure and required equipment
• Knows the different methods of compaction of soil in the mold(s), dependent upon the specifier.
• Knows the surcharge weights and what they simulate/represent.
• Knows the soaking time(s).
• Knows when and how to take the initial and final swell readings.
• Knows what the Standard says about the penetrations at 0.1" and 0.2".
• Knows how to correct stress curves for upward concavity and surface irregularities.
• Able to manually calculate (non-programmable calculator permitted) a CBR value, given some of the starting laboratory test results.

VI. ASTM D2216

A. Familiar with the scope of ASTM D2216
 • Understands the differences between Method A and Method B moisture content tests.

B. Familiar with the test procedure and required equipment
 • Knows minimum specimen size requirements for samples based on maximum particle size and desired accuracy.
 • Knows balance readability requirements for samples based on maximum particle size and desired accuracy.
 • Knows the proper oven temperature settings.
 • Knows how the Standard defines constant dry mass.
 • Knows when open containers are acceptable and when a desiccator and/or containers with close-fitting lids are required.
 • Able to manually calculate (non-programmable calculator permitted) moisture content.

VII. ASTM D2487

A. Familiar with the scope of ASTM D2487
 • Knows that this standard for classification is applicable only to naturally occurring soils.
 • Understands that this is a qualitative application and not quantitative. If quantitative information is required – supplemental testing results are necessary.
 • Knowledgeable of the history of the standard. It is based on an old airfield classification system, also known as the Casagrande system – named after the individual who developed it. It then became known as the USCS after adoption by several US government agencies.

B. Familiar with the terminology used in the standard
 • Understands what organic soils are.
 • Understands what clay is.
 - Knows that ‘Fat Clay’ is a ‘highly plastic clay’.
 - Knows that ‘Lean Clay’ is a ‘low plasticity clay’.
 • Understands what silt is.
 • Understands what gravel is, and differences between coarse and fine gravels.
 • Understands what sand is, and the differences between coarse, medium, and fine sands.

C. Familiar with the procedure for classification of soil
 • Knows the soil classification names and group symbols.
• Able to classify soil when given the necessary basic laboratory test results.

VIII. ASTM D4318

A. Familiar with the scope of ASTM D4318
• Knows that the material used for the test is obtained from either wet preparation or dry preparation, and that the wet preparation method is the default or ASTM preferred method.
• Knows that there are two methods for determining the liquid limit, Method A – Multipoint and Method B – One-Point, and that Multipoint method is preferred when greater precision is required.
• Knows that the liquid limit and plastic limit tests are often collectively called the Atterberg limits.

B. Familiar with the procedure and required equipment
• Knows how to prepare the test sample(s)
• Knows the testing procedures for both one-point and multipoint liquid limit testing.
• Knows how to proceed with and conclude testing when non-plastic soils are encountered.
• Knows the testing procedure for testing the plastic limit.
• Familiar with the testing equipment (liquid limit device, grooving tool, scale/balance, specimen containers, ground glass plate, etc.)
• Able to manually calculate (non-programmable calculator permitted) liquid limit, plastic limit, and plasticity index when given the starting laboratory test results.